b691585785086024549cfb9ac65f3397263965aa
tccgen.c:gv() when loading long long from lvalue, before
was saving all registers which caused problems in the arm
function call register parameter preparation, as with
void foo(long long y, int x);
int main(void)
{
unsigned int *xx[1], x;
unsigned long long *yy[1], y;
foo(**yy, **xx);
return 0;
}
Now only the modified register is saved if necessary,
as in this case where it is used to store the result
of the post-inc:
long long *p, v, **pp;
v = 1;
p = &v;
p[0]++;
printf("another long long spill test : %lld\n", *p);
i386-gen.c :
- found a similar problem with TOK_UMULL caused by the
vstack juggle in tccgen:gen_opl()
(bug seen only when using EBX as 4th register)
Tiny C Compiler - C Scripting Everywhere - The Smallest ANSI C compiler ----------------------------------------------------------------------- Features: -------- - SMALL! You can compile and execute C code everywhere, for example on rescue disks. - FAST! tcc generates optimized x86 code. No byte code overhead. Compile, assemble and link about 7 times faster than 'gcc -O0'. - UNLIMITED! Any C dynamic library can be used directly. TCC is heading torward full ISOC99 compliance. TCC can of course compile itself. - SAFE! tcc includes an optional memory and bound checker. Bound checked code can be mixed freely with standard code. - Compile and execute C source directly. No linking or assembly necessary. Full C preprocessor included. - C script supported : just add '#!/usr/local/bin/tcc -run' at the first line of your C source, and execute it directly from the command line. Documentation: ------------- 1) Installation on a i386/x86_64/arm Linux/OSX/FreeBSD host (for Windows read tcc-win32.txt) Note: For OSX and FreeBSD, gmake should be used instead of make. ./configure make make test make install Alternatively, out-of-tree builds are supported: you may use different directories to hold build objects, kept separate from your source tree: mkdir _build cd _build ../configure make make test make install Texi2html must be installed to compile the doc. By default, tcc is installed in /usr/local/bin. ./configure --help shows configuration options. 2) Introduction We assume here that you know ANSI C. Look at the example ex1.c to know what the programs look like. The include file <tcclib.h> can be used if you want a small basic libc include support (especially useful for floppy disks). Of course, you can also use standard headers, although they are slower to compile. You can begin your C script with '#!/usr/local/bin/tcc -run' on the first line and set its execute bits (chmod a+x your_script). Then, you can launch the C code as a shell or perl script :-) The command line arguments are put in 'argc' and 'argv' of the main functions, as in ANSI C. 3) Examples ex1.c: simplest example (hello world). Can also be launched directly as a script: './ex1.c'. ex2.c: more complicated example: find a number with the four operations given a list of numbers (benchmark). ex3.c: compute fibonacci numbers (benchmark). ex4.c: more complicated: X11 program. Very complicated test in fact because standard headers are being used ! As for ex1.c, can also be launched directly as a script: './ex4.c'. ex5.c: 'hello world' with standard glibc headers. tcc.c: TCC can of course compile itself. Used to check the code generator. tcctest.c: auto test for TCC which tests many subtle possible bugs. Used when doing 'make test'. 4) Full Documentation Please read tcc-doc.html to have all the features of TCC. Additional information is available for the Windows port in tcc-win32.txt. License: ------- TCC is distributed under the GNU Lesser General Public License (see COPYING file). Fabrice Bellard.
Description
Languages
C
96.9%
Makefile
1%
Assembly
0.8%
C++
0.7%
Prolog
0.4%
Other
0.2%